EZ-IO-F

Spread Weave 차세대 라미네이트

특장점

- 매우 낮은 Skew
- 나노기술기반 PTFE 라미네이트
- FR4의 드릴 품질 (1000+ Hits/Bit)
- FR4의 위치정합
- 매우 낮은 유리섬유 함량(10% 이하)
- LOT 내 0.18% 미만의 유전율 편차
- ULP 또는 압연동박이 표준
- 안정적인 온도의 DK
- 40층 이상 대형 PWB 가능
- CAF 저항성

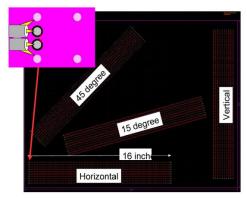
적용분야

- 25Gbps 이상 반도체 Test
- 테스트 및 측정
- 광데이터 전송 및 Backplane Routers
- Microwave 및 digital 신호 결합 Hybrid FR4 PWB
- 우주 및 국방

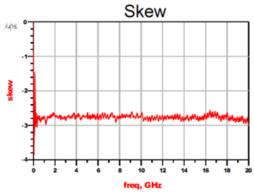
EZ-IO-F는 나노기술, spread weave, PTFE 기반의 내열성 복합재입니다. 나노입자 실리카를 사용하여 FR4 동급 소재수준의 우수한 드릴성을 제공합니다. EZ-IO-F는 매우 낮은(10wt% 이하) 유리섬유 함량을 기반으로 합니다. Skew 테스트로 확인되듯이 spread weave의 특성 덕분에 균일한 유전율 및 임피던스를 제공합니다. EZ-IO-F는 digital 송신속도가 25~112gbps인 차세대 digital 회로를 위해 만들어졌습니다.

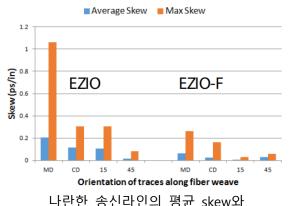
EZ-IO-F는 또한 digital 회로와 microwave 회로를 하나의 PWB에 결합해야 하는 점점 더 높은 주파수에서 작동하는 microwave 애플리케이션을 위해 설계되었다. EZ-IO-F는 가장 어려운 30~40층 digital 애플리케이션에서 가공업체 수준에서 최고인 FR4 재료에 도전하기 위해 개발되었다.

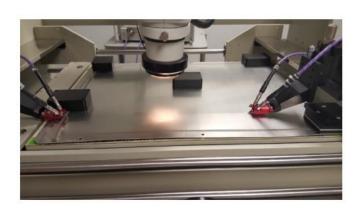
Skew 테스트는 artwork rotation 없이 0.3ps/inch의 최대 skew와 0.1ps/inch 미만의 평균 skew를 제안합니다. Artwork rotation이 15°일 때 최대 skew는 0.05ps/inch이며 평균 skew는 0에 가깝습니다. 흥미롭게도 skew는 1~20GHz에서 테스트할 때 평평합니다.

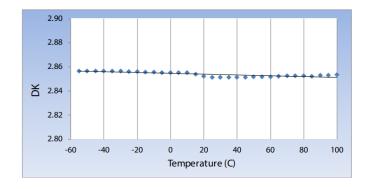

EZ-IO-F는 업계에서는 선도하는 zero profile 동박으로 생산됩니다. 차세대 ULP 동박은 압연 동박보다 성능이 뛰어나며, 고성능 라미네이트에 대한 새로운 기준을 제시합니다. ULP 동박 대 HVLP 또는 압연동박을 통해 삽입 손실의획기적 감소 효과를 볼 수 있습니다.

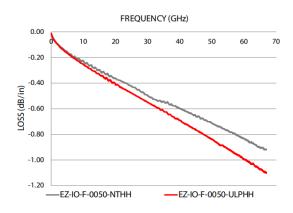
5wt% 미만의 유리섬유를 함유한 stripline channel을 위해서는 EZ-IO-F를 AGC의 FR-28-0040-50S(10GHz에서 0.0018DF) 비보강 prepreg와 결합하는 것이 가장 좋습니다. AGC의 fastRise™ prepreg는 시중에서 손실율이 가장 낮은 prepreg로 FR4와 같은 420°F 라미네이션 온도에서 라미네이트됩니다. EZ-IO-F/fastRise™의 낮은 삽입 손실은 과도한 움직임을 만들어 내는 비싼 공정인 순수 PTFE 라미네이트의 fusion bonding과 비등합니다.


fastRise™는 일반적으로 77GHz에서 사용되며, fusion bonding에 따른 비용 및 문제없이 다른 fusion bonding 라미네이트와 충분히 경쟁할 수 있습니다. EZ-IO-F는 가장 낮은 profile resistor foil과 함께 얻을 수 있습니다. 나노 입자 설계와 표면공극 부족은 초미세 회로(2-4mil 회로폭/간격)의 에칭을 가능하게 합니다.

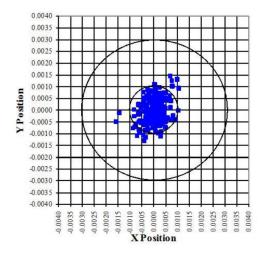

fastRise™ prepreg를 이용한 EZ-IO/EZ-IO-F의 skew 테스트

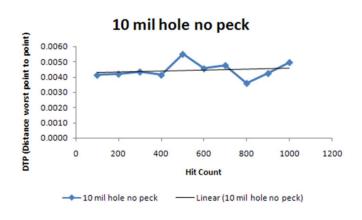

EZ-IO/EZ-IO-F 및 fastRise™ prepreg를 위한 skew 테스트 대상 레이아웃

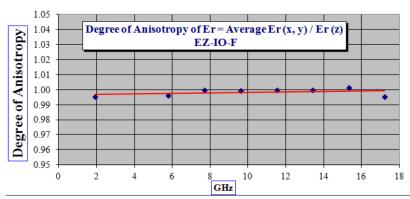

EZ-IO/EZ-IO-F 및 fastRise™의 skew 테스트는 skew가 주파수에 영향을 받지 않는다는 것을 일관되게 보여주고 있음.

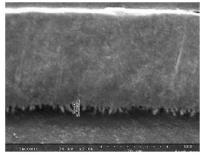

나란한 송신라인의 평균 skew와 최대 skew

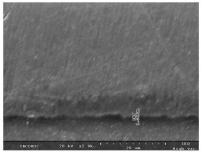
EZ-IO/EZ-IO-F 및 fastRise™의 probe test Stripline test 매체 물리적 측면은 5.2mil 선폭, 7.4mil 선간격, 13.3mil Ground to ground, 7mil EZ-IO-F, 6.3mil fastRise™ prepreg



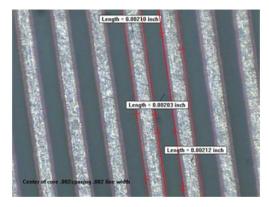

온도에 대한 유전율 편차, TcK = -20ppm/C


주파수에 대한 EZ-IO-F-0050의 Microstrip 삽입손실율 Southwest 커넥터 및 ULP 및 NT 0.5온스 동박 사용 (12mil 회로폭, southwest: 1892-04A-5(1.85mm female end launch), pin .005D, diel. .0290D)





EZ-IO 기계적 드릴링의 위치 정확도는 1000hits/bit 에도 드릴이동이 증가하지 않음을 보여줌



HVLP 동박

ULP 동박

HVLP 동박의 roughness와 ULP 동박의 roughness를 2,000배 확대한 SEM 비교사진

EZ-IO에 에칭된 2mil의 회로폭 및 회로간격 (Sanmina 제공)

특성	조건	대표값	단위	시험방법
전기적 특성				
Dielectric Constant	@ 10 GHz	2.80 ± 0.05		IPC-650 2.5.5.5.1 (Modified)
Dissipation Factor	@ 10 GHz	0.0015		IPC-650 2.5.5.5.1 (Modified)
Surface Resistivity		1.67 x 10 ⁶	Mohms (Mohms/cm)	IPC-650 2.5.17.1A (Elevated Temp.)
		2.29 x 10 ⁴	Mohms (Mohms/cm)	IPC-650 2.5.17.1A (Humidity
Volume Resistivity		3.58 x 10 ⁷	Mohms (Mohms/cm)	IPC-650 2.5.17.1 Sec. 5.2.1 (Elevated Temp.)
		3.94 x 10 ¹⁰	Mohms (Mohms/cm)	IPC-650 2.5.17.1 Sec. 5.2.1 (Humidity Cond.)
Dimensional Stability	MD	0.45	mm/M (mils/in)	IPC-650 2.4.39A (After Etch)
	CD	0.44	mm/M (mils/in)	
	MD	0.42	mm/M (mils/in)	IPC-650 2.4.39A (Thermal Stress)
	CD	0.33	mm/M (mils/in)	
열 특성				
Thermal Conductivity		0.49	W/M*K	ASTM E1530-11
		0.53	W/M*K	ASTM E1461
CTE (45 - 125 °C)	Х	19		
	Y	25	ppm/°C IPC-650 2.4.41/ASTM	IPC-650 2.4.41/ASTM D3386
	Z	49		
기계적 특성				
Peel Strength	0.5 oz. ULP	1.05 (6)	N/mm (lbs/in)	IPC-650 2.4.8, sec. 5.2.2
	1 oz. ULP - MD	1.05 (6)	N/mm (lbs/in)	
	1 oz. ULP - CD	1.05 (6)	N/mm (lbs/in)	
	1 oz. ULP - MD	1.05 (6)	N/mm (lbs/in)	IPC-650 2.4.8, sec. 5.2.2 (Thermal Stress)
	1 oz. ULP - CD	1.05 (6)	N/mm (lbs/in)	
	1 oz. ULP - MD	1.05 (6)	N/mm (lbs/in)	PC-650 2.4.8, sec. 5.2.2 (Chemical Exp.)
	1 oz. ULP - CD	1.05 (6)	N/mm (lbs/in)	
Compressive Modulus		3,496 (507,000)	N/mm² (psi)	ASTM D695-15
화학적 / 물리적 특성				
Density	Specific Gravity	2.12	g/cm³	STM D792 -13 (Method A)
Dielectric Breakdown		39.8	kV	IPC-650 2.5.6/ASTM 229-13
		23.8	kV	IPC-650 2.5.6.2/ASTM D149-09

^{* 2.80} DK가 낮은 spread weave 유리섬유 사용 ** 2.85 DK가 보통인 spread weave 유리섬유 사용

- * 제공된 모든 테스트 데이터는 대표적인 값이며, 제품 스펙값으로 사용할 수 없습니다. 중요 스펙에 대한 공차는 회사 담당자에게 직접 문의하십시오.
- * EZ-IO-F는 0.005inch (0.125mm) 단위로 제조됩니다.
- * 표준 패널 규격은 18inch x 24inch (457mm x 610mm) 입니다.
- * 추가적인 두께, 기타 사이즈 및 기타 클래딩에 대해서는 AGC에 문의하십시오.

